
Seminar Report: Deep Learning Sequence Modelling
(Natural Language Processing)

Neha Das
Technical University of Munich

neha.das@tum.de

Abstract

Recent experiments with deep learning techniques in the field of sequence modelling tasks in
Natural Language Processing (NLP) such as machine translation and text summarizing have been
quite successful and have produced improved results over classical methods. This work will take
a look at the various deep learning architectures and constructs used to model sequences and aid
tasks that involve processing and/or producing sequence data, especially in context of NLP. It
would additionally explore in detail, an application of sequence-to-sequence NLP - abstractive
text summarization - with particular emphasis on methods from Nallapati et al. (2016)

1 Introduction

Natural Language Processing applications often deal with sequential data. While in applications such
as Parts of Speech tagging or Named Entity Relationship modelling, the output is often a single value
corresponding to the currently processed token in the sequence, other applications in this domain such
as machine translation, video captioning and text summarization output a sequence whose constituents
do not necessarily have a one to one relationship with the input.

Recently, deep learning methodologies have successfully been used to model many of the applications
in the latter category. These models are often referred to as ”sequence to sequence” models and have
provided improved results for machine translation (Sutskever et al., 2014; Cho et al., 2014a), abstractive
text summarization (Rush et al., 2015; Nallapati et al., 2016), video captioning (Venugopalan et al., 2015)
and other such applications over other methods such as statistical phrase-based systems (Banko et al.,
2000), which have a large memory footprint because of the huge phrase table that is created in the process
or rule-based systems (Cohn and Lapata, 2008), which are domain specific and need a lot of linguistic
expertise and manual effort for rule creation.

Deep learning models often utilize an encoder-decoder approach where they encode the input to a
fixed-length representation (Cho et al., 2014a) and feed it to the decoder and generate the output se-
quence. Over-time however, additional constructs such as ”attention” (Bahdanau et al., 2014) and in-
corporation of additional features along with the plain input (Nallapati et al., 2016) have facilitated in
creating models that give more accurate results.

The aim of this body of work is to introduce all these concepts and then focus our attention on mod-
elling a particular application - abstractive text summarization - from the paper by Nallapati et al, (2016)

2 Encoder-Decoder Architecture

The encoder-decoder architecture forms the basis of nearly all sequence modelling techniques in deep
learning. Most notably, this approach was used in (Sutskever et al., 2014), for machine translation from
English to French texts. In the early versions of this model, the sequential input is fed to an encoder deep

neural network (DNN) which produces a fixed length context. This fixed length context vector is then
fed to the decoder, another neural network, which produces the output.

Since the encoder and decoder each process or output sequential data, they are often chosen to be
Recurrent Neural Networks (RNN) (Sutskever et al., 2014; Bahdanau et al., 2014), as you can see in
Figure 1(a). However, Convolutional Neural Networks (CNN) (Rush et al., 2015) and Gated recursive
Convolutional Neural Networks (Cho et al., 2014a) have also been experimented with as substitutes for
RNN encoders. A limitation of using CNNs could be that while they preserve spatial relations, they do
not preserve the ordering in sequences.

(a) (b)

Figure 1: (a) An encoder-decoder architecture with an RNN encoder and an RNN decoder. xi is the
encoder input at time step i of the encoder, si is the hidden state at time step i calculated by function s,
v is the context vector of length n, hj represents the hidden state at time step j calculated by function h
and finally, yj is the output at time step j of the decoder and is calculated using y. (b) A bidirectional
encoder. The layer with hidden units sf is for modelling forward dependencies, and the one with hidden
units sr models backward dependencies.

2.1 Encoder-Decoder Framework with RNN

As described in Figure 1(a), the encoder RNN works on the input sequence X = {x1, ..., xn} and
produces a hidden state si at each timestep i where si is the function of the input at timestep i and the
hidden state from the previous time step si−1. The context vector v is the function of the last hidden
input sn and is fed into the decoder.

The decoder consists of hidden states H = {h1, ..., hm}, that are each a function of the hidden state
from the previous timestep hj−1 and the output from the previous timestep yj−1. The first hidden unit h0,
however takes context vector v as an input. The output yj at each timestep is extracted from a probability
vector over all the target vocabulary calculated by a softmax function (Cho et al., 2014a) that uses the
hidden state hj ({Wt, bt} are learnable parameters):

P (yj,t = 1|v, y1, ..., yj−1) =
exp(Wthj + bt)∑T

t′=1 exp(Wt′hj + bt′)
(1)

How exactly the output yj at each timestep j is inferred, will be explored in a later Section. Dur-
ing training, however, we only calculate the probabilities of the words that appear in the ground truth
sequence and use them to maximize the conditional probability described below:

P (y1, ..., ym|x1, ..., xn) =
m∏
j=1

P (yj |v, y1, ..., yj−1) (2)

The goal of a sequential model is to maximize the conditional probability of the obtained sequence,
given the input sequence. With encoder-decoder modelling, however, this probability could be decom-
posed (Sutskever et al., 2014) like in the above equation. In effect, of course, instead of maximizing this
conditional probability, we aim to minimize its negative log-likelihood during our training process.

2.2 Modelling dependencies in both directions - Bidirectional RNN

The RNN model introduced in section 2.1 models dependencies in input sentences in a single direction.
This is because the hidden state si in the encoder depends on only the previous hidden input si−1, but not
on the next one (si+1). As a result, the hidden units cannot derive any context from the next token, even
though the current token significantly relies or even derives its meaning from the next one. Bidirectional
RNNs (Schuster and Paliwal, 1997) resolve this issue. As shown in Figure 1(b), bidirectional RNNs
contain an additional layer of hidden units with reversed connections so that they can model dependencies
in the backward direction.

2.3 Overcoming Limitations of Vanilla RNNs

The RNN model from section 2.1, also known as the vanilla RNN, generally suffers from a limitation
known as the vanishing/exploding gradient problem that exists because the weights of an RNN must be
adjusted by backpropagating through time (BPTT). This makes vanilla RNNs unsuitable for modelling
long term dependencies (Britz, 2015).1

These issues can be dealt with by using a modified version of vanilla RNN architecture such as Long
Short Term Memory (LSTM) (Gers et al., 1999; Hochreiter and Schmidhuber, 1997) or Gated Recurrent
Units (GRU) (Cho et al., 2014b).

2.4 Limitations of the Encoder-Decoder Model with Fixed Sized Context

As pointed out in the paper by Bahdanau et al. (2014), using a fixed sized context vector, like in the
models introduced in Section 2, can have a severe limitation - it is hard to model long sequences with
such architectures since a fixed sized context vector cannot appropriately represent a sequence as it keeps
getting longer. Additionally, since the context vector is derived from the last input hidden unit, it may
not be laying due emphasis on the earlier parts of the sequence. As a consequence, the quality of the
output produced by the network suffers when the sequence length is increased. This has been empirically
observed by Cho et al.(2014a). A solution to this predicament is to discard the fixed sized context vector
and use the concept of attention instead (Bahdanau et al., 2014).

3 Attention Mechanism

The attention mechanism was first used in a sequential modelling setting by Bahdanau et al.(2014) to
overcome the limitations of a fixed sized context vector. It involves the creation of a context vector cj
which serves as an input for each decoder hidden state hj . Each of these context vectors are computed as
a weighted sum of all of the input hidden states S = {s1, ..., sn}. The weights {ai,j}n,mi=1,j=1 intuitively
describe the influence of input xi on the output yj . These concepts are illustrated in Figure 2(a).

The attention weights are calculated as shown in equation 3. Here ei,j is an alignment model that
scores the alignment between inputs around position i and outputs around position j and depends on the
previous output hidden state hj−1 and the input hidden state si. The coefficients of the alignment model
e are learnable parameters 2. This means that the network learns to provide attention to influential parts
of the input while discarding the non-essential components when it predicts an output.

ai,j =
exp(ei,j)∑n

i′=1 exp(ei′,j)
where ei,j = e(si, hj−1) (3)

1See Part 3 of Danny Britz’s tutorial on Recurrent Neural Networks (Britz, 2015) for a thorough treatment of BPTT and
vanishing gradients

2The notation is tweaked from the original formulation in Bahdanau et al. (2014) slightly in order to avoid conflicts with
the established notation

(a)

(b) (c)

Figure 2: (a) Attention Mechanism. xi and yj represent the input and outputs at timesteps i and j
respectively (b)Local Attention Mechanism. The attention window in this example is focused around
position 3 of the input sequence. This position is outputted by the decoder via a predictive alignment
function (Luong et al., 2015). (c) Hierarchical Attention Mechanism. The attention mechanism is present
at both the word and sentence level (Nallapati et al., 2016).

3.1 Local Attention

A disadvantage of the attention mechanism described above is that the computational expense of the
attention weight calculation increases with the increase in input sequence length. This can be handled
by calculating the attention weights for an output yj at decoder position j over a fixed window localized
around a single position pj in the source sequence (Luong et al., 2015) (See Figure 2(b)). pj can be
calculated as the result of a function taking the decoder hidden state at timestep j as an input.

3.2 Hierarchical Attention

In text summarization in particular, the input tends to be multi-sentencial. As a consequence, in addition
to words, it might be beneficial to lay due emphasis upon the key sentences as well. Heirarchical attention
mechanism (Nallapati et al., 2016) thus models attention both at word level and sentence level (See Figure
2(c)). To incorporate attention at both levels in the context for an output step, word/token level attention
at each step is weighed by the attention weight of the sentence it is a part of.

4 Inferring output from the Decoder - Beam Search

Recall from Section 2.1 that the decoder outputs the probabilities over all the words in the target vocabu-
lary. While in training, output yj is chosen to be the one in the reference summary, at inference time we
would like to produce a sequence {y}mi=1 that maximizes the conditional probability P ({y}mi=1|{x}

n
i=1).

The foolproof way of achieving a sequence that satisfies the above condition, is however, by conducting
an exhaustive search through the target space - a task of combinatorial complexity, and therefore virtually
non-scalable and impossible for tasks with large target vocabularies. Another technique at the opposite
end of the extremum is the greedy approach - at each step j of inference, the decoder chooses the word
from the target vocabulary with the highest conditional probability P (yj |v, y1, ..., yj−1).

The most frequent approach however, for inferring from sequential modelling architectures is beam
search (Koehn, 2004). In this approach, at each step j of inference, the decoder chooses the first b
sequences {y}jk=1 from the target vocabulary that maximize the joint probability P (yj , yj−1, ..., y1|v),
where b is the size of the beam, such that the sequence {y}j−1

k=1 is a sequence from the b options at step

j − 1 of the decoder and the output yj ε target vocabulary

5 Application - Abstractive Text Summarization

Automatic Text Summarization is a well known application of sequence modelling and has been used and
refined through research across a variety of domains - medical, legal and print media. Methods tackling
this problem are usually classified into two broad categories - extractive summarization and abstractive
summarization. Extractive techniques create a summary from a long text by concatenating a selection
of sentences (key phrases) from the text itself. The aim of abstractive text summarization, on the other
hand, is to summarize the main ideas of the document or input text, potentially using words or phrases
unseen in the source document but possibly relevant to the compression of its key concepts. As expected,
this is a harder problem to solve.

In the recent years, however, deep learning techniques have achieved state-of-the-art results for ab-
stractive text summarization (Rush et al., 2015; Nallapati et al., 2016). Many of the concepts outlined
in the previous sections have been incorporated in the architectures implemented in the aforementioned
papers. This section will describe one such architecture and subsequently the results from the paper
”Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond” by Nallapati et al
(2016).

5.1 Datasets

The deep learning architectures introduced in this paper have been trained and/or evaluated using three
different corpora. A description of these datasets are provided in Table 1.

Dataset Input Texts Reference
Summary

Purpose Added Features Size

Gigaword Newswire text data
from four differ-
ent international
sources

Headlines Training and
evaluation

Yes; provides the pos-
sibility to extract POS
and NER tags and
TF-IDF statistics

3.8 M training
pairs, 2000
validation pairs
and 2000 test
pairs

DUC
(2003,2004)

News articles from
New York Times
and Press Wire
services

4 reference hu-
man generated
summaries

Only evalua-
tion

No; only provides the
possibility of extract-
ing word tokens

(2003) 624
pairs, (2004)
500 pairs

CNN/Daily
Mail (mod-
ified)

Stories from CNN
and Daily Mail
websites

Summary
bullets: multi-
sentencial form

Training and
evaluation

Yes; provides the pos-
sibility to extract POS
and NER tags and
TF-IDF statistics

286,817 train-
ing pairs,
13,368 vali-
dation pairs
and 11,487 test
pairs

Table 1: Training/Evaluation Corpora.

5.2 Architecture

The neural networks implemented and evaluated in this paper consist of combinations of the concepts
introduced in the above sections. The most basic of these is an encoder-decoder model with attention,
a bidirectional GRU encoder and a unidirectional GRU decoder. This forms the basis of all the other
neural architectures that are evaluated in this paper. Some other constructs that have been used to create
and evaluate more sophisticated models are hierarchical attention (Section 3.2) and a novel technique
called the switching generator-pointer model (explained in the following subsection).

5.2.1 Switching Generator-Pointer Model

Often, the words or phrases in a test document may be central to the summary but are rare or unseen
during the training time, and as such excluded from the target vocabulary which is fixed at the time of
inference. Instead, the decoder emits a < UNK > token in place of these out-of-vocabulary (OOV)
tokens. However, the presence of such tokens in the output summary makes it illegible.

This paper handles the above predicament by using a switch mechanism (see Figure 3) between two
decoder components - a generator that can generate a new token from the vocabulary at time step j, given
the output hidden state hj , and a pointer that produces the position of the token in the source document
that the decoder would like to point to instead of outputting a < UNK > placeholder.

Figure 3: Switching mechanism between generator and pointer.

The state of the switch (sw) is modelled using the following probabilistic expression:

P (swj = 1) = sigmoid(sw(hj , ci, yj−1)) (4)

The output of the decoder is modelled by the following expression:

logP (Y |X) =
n∑

j=1

(gjlog{P (yj |{y}j−1
1)P (swj)}+ (1− gj)log{P (pj |{y}j−1

1)(1− P (swj))}) (5)

where, P (Y |X) is the probability of sequence Y = {y1, ..., yn}, gj is an indicator function and is
set to 0 whenever the word at position j in the reference summary is OOV with respect to the target
vocabulary, P (yj |{y}j−1

1) (See equation 1) is the decoder output probability using the generator given
the previous outputs, and P (pj |{y}j−1

1) is probability of the output of the pointer, given the previous
outputs. pi is calculated as argmaxi(ai,j) where ai,j is the attention weight for output j and input i and
is calculated using equation 5.

5.3 Inference and Training Details

The network decoder uses beam search with a beam of size 5 to infer output words. The summary size
is limited to 30 words, this being the size of the largest summary in the sampled validation set from
the Gigaword corpus. Further, the training and evaluation processes utilize The Large Vocabulary Trick
(Jean et al., 2014) - a technique that creates the decoder vocabulary for a minibatch during the training
time by picking up the most frequent words from the target dictionary in addition to the words in the
minibatch’s source documents - in order to reduce the size of the decoder’s soft-max layer. This not only
helps in cutting down the computational complexity of the decoder, but also increases the convergence
rate of the training process, by concentrating on words essential to the given summary. In addition to
this, the best performing architecture (on the Gigaword corpus) takes linguistic features such as the TF-
IDF scores, Name-Entity Relationship tags and Parts of Speech tags as an additional input along with the
word embedding vector for each token to compose a feature rich encoder. As observed in the next section,
the incorporation of additional features improve the summarization results. All the models were trained
using Adadelta with an initial learning rate of 0.001 over a batch of 50 pairs and random-shuffling every
epoch. To regularize the training process, early stopping was used based on the validation sets along with
gradient clipping.

5.4 Evaluation

The authors of this paper used two different metrics are used to evaluate the summarization results
produced by the trained models - The first, ROUGE, is used to evaluate the quality of the output and its
similarity to the reference summary(-ies) from the dataset. ROUGE-F1 is preferred over ROUGE-recall
by the authors since Recall scores do not penalize longer summaries, but Recall scores have also been
calculated for comparison with state-of-the-art techniques. The second metric, Src. copy rate, calculates
the percentage of words in the output summary that were part of the source document. Thus, this metric
measures the abstractive ability of the model. The models introduced in this paper were evaluated over
the three datasets introduced in Section 5.1:

5.4.1 Gigaword Corpus

As noted before, the Gigaword corpus is a large collection of annotated news articles from 4 international
sources. The annotations in the Gigaword corpus are used by some of the models (Table 2) to extract fea-
tures additional to the word embedding vectors that are inputted to the network. Table 3(a) summarizes
the models that were trained and evaluated on the Gigaword Corpus.

Models Input |Xs| HAbool SGPbool Remarks

words-lvt2k-1sent Word Embeddings One False False This is the baseline architecture
(See table description)

words-lvt2k-2sent Word Embeddings Two False False Improved Results over baseline.
Inclusion of more sentences in the
input noted to degrade the result.

words-lvt2k-2sent-hieratt Word Embeddings Two True False Noted to learn the relative impor-
tance of the two sentences

feats-lvt2k-2sent Word Embeddings +
TF-IDF Scores + POS
Tags + NER Tags

Two False False Incremental gains over words-
lvt2k-2sent

feats-lvt2k-2sent-ptr Word Embeddings +
TF-IDF Scores + POS
Tags + NER Tags

Two False True This is the best performing model
for this corpus as noted in Table
3(c)

Table 2: Models trained and evaluated on the Gigaword corpus. The baseline architecture, words-lvt2k-
1sent, consists of an attentional encoder-decoder with a bidirectional GRU encoder and a unidirectional
GRU decoder. The Large Vocabulary Trick is used to build and train on the target vocabulary. |Xs| is the
number of sentences used from the reference summary for training the model. HAbool indicates the use
of Heirarchical Attention. SGPbool indicates the use of switching generator-pointer.

5.4.2 DUC Corpus

The DUC corpus lacks the amount of data needed for training and was thus used for evaluation of various
models in comparison to Rush et al.’s model ABS and ABS+ (Rush et al., 2015) and the best performing
model on DUC 2004, TOPIARY (Zajic et al., 2004). Rush et al.’s models were based on a convolutional
encoder instead of being RNN based. ABS+ was trained on the Gigaword Corpus (ABS) and tuned on
the DUC-2003 validation set. In contrast, the model proposed by Nallapati et al. (2016), words-lvt2k-
1sent (see Table 2) was trained only on the Gigaword corpus with no further tuning. It still performs
consistently better than ABS+ both during Gigaword evaluation and DUC evaluation. Limited ROUGE
Recall is used as an evaluation criteria for these models (Table 3(b))

5.4.3 CNN/Daily Mail Corpus

Both the Gigaword and DUC corpora have one sentence summaries. In contrast, the modified CNN/Daily
Mail dataset proposed by Nallapati et al. (2016), contains multisentencial summaries.

Interestingly, the most basic model words-lvt2k yields higher performance statistics over the more so-
phisticated models containing hierarchical attention (words-lvt2k-hieratt) or switching generator-pointer

Model Rouge-1 Rouge-2 Rouge-L Src.copy Rate (%)

Full length F1 on internal test set of 2000 pairs

words-lvt2k-1sent 34.97 17.17 32.70 75.85
words-lvt2k-2sent 53.73 17.38 33.25 79.54
words-lvt2k-2sent-hieratt 36.05 18.17 33.52 78.52
feats-lvt2k-2sent 35.90 17.57 33.38 78.92
feats-lvt2k-2sent-ptr 36.40 17.77 33.71 78.70

Full length Recall on the test set used by Rush et al. (2015)

ABS+ (Rush et al., 2015) 31.47 12.73 28.54 91.50
words-lvt2k-1sent 34.19 16.29 32.13 74.57

Full length F1 on the test set used by Rush et al. (2015)

ABS+ (Rush et al., 2015) 29.78 11.89 26.97 91.50
words-lvt2k-1sent 32.67 15.59 30.64 74.57

Model Rouge-1 Rouge-2 Rouge-L

TOPIARY 25.12 6.46 20.12
ABS 26.55 7.06 22.05
ABS+ 28.18 8.49 23.81
feats-lvt2k-1sent 28.35 9.46 24.59

Model Rouge-1 Rouge-2 Rouge-L

words-lvt2k t 32.49 11.84 29.47
words-lvt2k-ptr 32.12 11.72 29.16
words-lvt2k-hieratt 31.78 11.56 28.73

Table 3: Evaluation of various models on the (a) Gigaword corpus, (b) DUC corpus and the (c) Dailymail/
CNN corpus. The values in these tables is taken from Nallapati et al. (2016). The bold values indicate
the highest performance among all the models for a certain evaluation criteria. ABS+ is the convolutional
encoder model by Rush et al. (2015), that is trained on Gigaword corpus and tuned on the DUC validation
set.

mechanism (words-lvt2k-ptr). The authors conclude that this dataset needs further investigation and
more experiments in order to draw any inferences from this observation.

5.5 Qualitative Evaluation

While, the system was noted to produce good quality summaries most of the times, it may misinterpret
more complex sentences and produces summaries that diverge from the meaning of the input text. An
example of a poor summary is provided by the authors (Nallapati et al., 2016):

• Source: broccoli and broccoli sprouts contain a chemical that kills the bacteria responsi-
ble for most stomach cancer , say researchers , confirming the dietary advice that moms
have been handing out for years . in laboratory tests the chemical , < UNK > , killed
helicobacter pylori , a bacteria that causes stomach ulcers and often fatal stomach cancers.
• Reference Summary: for release at ####< UNK >mom was right broccoli is good

for you say cancer researchers
• System Summary: broccoli sprouts contain deadly bacteria

6 Conclusion

In this work, sequential modelling tasks especially in the context of NLP are studied in detail. Focus
is placed on Deep Learning approaches that are more generalized than rule-based systems and consume
lower memory than statistical methods. We further learn, that encoder-decoder models form the basis
of deep learning sequential modelling and reason why RNN’s make a good choice for the encoder and
the decoder. The limitations of encoder-decoder models with a fixed sized context vector are explored
and the role of attention in combating this issue is elaborated upon. The role of hierarchical attention
in interpreting multi-sentencial inputs is also explored, both in theory, as well as through statistical
evidence produced by the application paper (Nallapati et al., 2016). Finally, the paper also produces
results supporting the inclusion of feature rich inputs for a better performing system.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to
align and translate. CoRR, abs/1409.0473.

Michele Banko, Vibhu O. Mittal, and Michael J. Witbrock. 2000. Headline generation based on statistical transla-
tion. In Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics.

Denny Britz. 2015. Recurrent neural networks tutorial. Http://www.wildml.com/2015/10/recurrent-neural-
networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014a. On the properties of neu-
ral machine translation: Encoder–decoder approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation, pages 103–111. Association for Computational Linguistics.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014b. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078.

Trevor Cohn and Mirella Lapata. 2008. Sentence compression beyond word deletion. In Proceedings of the 22nd
International Conference on Computational Linguistics (Coling 2008), pages 137–144. Coling 2008 Organizing
Committee.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. 1999. Learning to forget: Continual prediction with lstm.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. 2014. On using very large target vocab-
ulary for neural machine translation. arXiv preprint arXiv:1412.2007.

Philipp Koehn. 2004. Pharaoh: a beam search decoder for phrase-based statistical machine translation models. In
Conference of the Association for Machine Translation in the Americas, pages 115–124. Springer.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Caglar Gulcehre, and Bing Xiang. 2016. Abstractive text
summarization using sequence-to-sequence rnns and beyond. In Proceedings of The 20th SIGNLL Conference
on Computational Natural Language Learning, pages 280–290. Association for Computational Linguistics.

Alexander M. Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention model for abstractive sentence
summarization. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 379–389. Association for Computational Linguistics.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural networks. IEEE Transactions on Signal
Processing, 45(11):2673–2681.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In
Advances in neural information processing systems, pages 3104–3112.

Subhashini Venugopalan, Marcus Rohrbach, Jeff Donahue, Raymond J. Mooney, Trevor Darrell, and Kate Saenko.
2015. Sequence to sequence - video to text. CoRR, abs/1505.00487.

David Zajic, Bonnie Dorr, and Richard Schwartz. 2004. Bbn/umd at duc-2004: Topiary. In Proceedings of the
HLT-NAACL 2004 Document Understanding Workshop, Boston, pages 112–119.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://www.aclweb.org/anthology/P00-1041
http://www.aclweb.org/anthology/P00-1041
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
http://www.aclweb.org/anthology/C08-1018
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/D15-1044
http://arxiv.org/abs/1505.00487

