Predicting depth image from a single RGB image

Based on the paper Learning Fine-Scaled Depth Maps from Single RGB Images
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Training Loss

Purpose and motivation for generating depth maps from RGB images
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L o L--> O e = - After 50 epochs, we could see the depth maps from scale 3 were slightly more
For training the model, we use the dataset from RMRC indoor depth challenge® - E detailed when compared to scale 2 results
which is a subset of the NYU Depths Dataset V2. The total dataset consists of concat concat : ; - The training easily converged to all zero predictions if the learning rate is large
~4000 RGB-Depth pairs for training. Since, the dataset is too small, we augment ‘=" h > When a large regularizer is used, the loss stabilizes and doesn‘t converge
the data by applying transformations such as horizontal and vertical flips. E - Downscaling the images did not affect the end predictions significantly
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Our work in this project is largely inspired by the findings of the paper “Learning
Fine-Scaled Depth Maps from Single RGB Images“!". As in the paper, we tackle concat
various challenges posed by the previous work and the general formulation of the "

problem by incorporating the following structures in our network architecture:
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Multiple Scales:

This network accumulates information from the RGB image on three different
scales which are then reconciled to give us depth images with better resolution.
» Scale 1: Scale 1 accumulates global inforrmation from the RGB data through a

» Since, the training was performed on just 4000 images, it tends to overfit, and the
generalization gap is large, with the test accuracy nearing only 50-51%. However
this value is significantly better than what it was without regularization.
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- Scale 3: predicts a depth map with finer details and higher resolution. e T— - Testing Acc = 0.514 - Inconsistencies in network design with respect to the paper
e Epochs =100  Able to learn global depths. > Implementation of set loss
Set Loss for regularization: o | Actual > EelEnse= 1 > NG IO D [EelT logel - The original NYU depth dataset was too large to work with ( ~ 220k images )
To avoid overfitting, a unique form of regularization is imposed. We invert the Depth Images depths and object _ o _ _
predicted depth maps (D;, D;) for the flipped images by applying the inverse structures that well. 95 » Creating th(_e dataset: Augmenting images from RMRC dataset using multiple
augmentation function (g; ) and minimize the mean squared difference (E) 2) « Trained scale 3 while + Training time = 3 hours. transformations
between the various predicted images of a set keeping scale 1 &2 fixed. e« Training Acc = 0.833 > The hyperparameters mentioned in the paper didn‘t work and we spent a lot of time
' Predicted « Used mean squared loss < Testing Acc = 0.515 tuning them
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Experiment 1 « Batch size = 1 1 memory errors in CUDA. We had to scale the images down.
Skip Layers « Generates slightly more
Two skip layers are added between the scales 1 and 2. They radically improve sharp images. Training Loss
the time it takes to converge for the network. Predicted 3) « Trained scale 1 & 2. « Training Acc = 0.484
Depth Images « Used mean squared loss * Testing Acc = 0.394 01 f f f K / ||
Experment 2 and set loss.  Training was stable ~ Use local gradient estimates to enhance current depth predictions. The refined
_ * Epochs =5 « Some loss fluctuations. depth maps would minimize difference between estimated depths and estimated
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We minimize a pixelwise mean square error between the predicted and actual Depth Images | loss and_Set loss. * Training completely e
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We also attempted to minimize a root mean square loss, but the results were not Predicted and set loss. Training diverged.
comparable to MSE Loss Depth Images * Epochs =5 * Heavy loss fluctuations. o _ _ _
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predicted and actual depth images.
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