

ABSTRACT

Presented by - Neha Das, Sumit Dugar

Analysis of Iterative Closest Point

DATASET : WE PERFORM OUR ANALYSIS ON TWO DATASETS

REFERENCES

IMPLEMENTED VARIANT : BASELINE

ITERATIVE CLOSEST POINT ALGORITHM

IMPLEMENTED VARIANT : MULTI-RESOLUTION ICP

IMPLEMENTED VARIANT : PROJECTIVE ICP

Iterative closest Point (ICP) is an algorithm employed to minimize the difference between
two point clouds given an initial estimate of the relative pose. It is often used to reconstruct
2D or 3D surfaces from different scans, to localize robots and achieve optimal path
planning and to register medical scans. ICP has several steps and each step may be
implemented in various ways which give rise to a multitude of ICP variants. In our project,
we implement and analyze several variants of ICP, comparing them on the basis of
execution speed and quality of the result.

[1] T. Jost and H. Hugli, "A multi-resolution ICP with heuristic closest point search for fast and
robust 3D registration of range images", Fourth International Conference on 3-D Digital
Imaging and Modeling, 2003. 3DIM 2003. Proceedings.

[2] Blais, G. and Levine, M, "Registering Multiview Range Data to Create 3D Computer
Objects", Trans. PAMI, Vol. 17, No. 8, 1995

[3] Presentation by Ronen Gvili, "Iterative Closest Point",
www.cs.tau.ac.il/~dcor/Graphics/adv-slides/ICP.ppt

[4] Levenberg, K, "A Method for the Solution of Certain Problems in Least Squares", Quart.
Appl. Math. 2, 164-168, 1944

[5] Marquardt, D, "An Algorithm for Least-Squares Estimation of Nonlinear Parameters", SIAM
J. Appl. Math. 11, 431-441, 1963

[6] Exercise 3, from the lecture "3D Scanning and Analysis", Technical University of Munich
[7] J. Sturm etal., "A Benchmark for the Evaluation of RGB-D SLAM Systems", Proc. of the

International Conference on Intelligent Robot Systems (IROS) 2012 Oct.

As indicated above, the algorithm for applying iterative closest point to register a
sourcemesh to a target mesh has several steps. We describe these steps in brief below :

1. Selection: A set of points are selected from the source mesh. In the
vanilaimplementation, these points are often selected randomly. Selecting more
pointsthan less usually leads to a more accurate registration but at the cost of
executionspeed.

2. Matching: Selected points from the source mesh are transformed via the initial
estimated relative pose and matched to the points in the target mesh. The aim here is
to pair up points in the two meshes that actually both project to the same point in the
real world model.

3. Weighing: The matched points are accordingly weighted. A higher weight is often
assigned to a more undesirable pair of matched points. In our implemented variants,
we have uniformly weighed all the matched pairs.

4. Rejection: Of the matched points, we reject the outliers - for instance, we may discard
the pairs that are separated by a distance greater than some threshold.

5. Error metric: We select an error metric for evaluating the matched pairs. For example,
a point to point distance metric, or a point to plane distance metric.

6. Optimizing technique: We must also select an optimization technique for minimizing
the error metric for the corresponding pairs from the source and target meshes. For
instance, we may opt for linear least squares or non-linear least squares

We will analyze three implementations of ICP that result from a different methodology
being used in the steps 1, 2 and 6 of the algorithm as outlined in the above section.

The baseline ICP we use has the following features:

● A fixed number of points are randomly selected from the source mesh.
● An attempt is made to match all of the selected points to points in the target mesh by

means of a kdd tree and Nearest Neighbor approach
● Matched pairs are rejected if the distance between them is greater than a fixed

threshold
● The error metric to be minimized is selected to be the sum of the point to plane

distance between all the matched pairs
● A Non-linear least squares optimization technique, specifically Levenberg-Marquardt

[4] and [5], is used to minimize the error. We run the optimization for 10 iterations for
the RGBD-Dataset.

We introduce a different methodology for step 1 in this scheme. Instead of selecting a fixed
number of source points for matching, we change the number of points to be matched as we
iterate, effectively moving from matching a coarse resolution of the source mesh to matching a
fine resolution of the source mesh (more number of points) as we iterate and refine our solution.
Our implementation follows the multiresolution scheme outlined in [1].

We sample about one eight of the total source pixels - this is our richest resolution. We
resample these points twice to give us our 2nd and third resolutions (see Fig 1). We match the
points first in the coarsest resolution and then, as we move through our fixed number of
iterations, we increase the resolution.

Lessening the number of points in the
first few steps results in less accurate
registration, but as the resolution is
increased in the subsequent iterations,
the result improves as well. Additionally,
we still have the benefit of a faster
convergence speed over the vanilla
implementation.

In our baseline implementation of ICP, we use Nearest-Neighbors for calculating matches (Step
2 from Iterative Closest Point Algorithm). Here, we use a much faster method based on the
paper by Blais and Levine [2]

Instead of searching for a neighbor in the whole space of sampled points from the target, we
leverage the structure of our 2D image projection of the 3D scene to automatically calculate the
closest point in the target sample space (or a tighter search neighborhood for our source point)
(see Fig 2).

We describe the algorithm for matching in
projective ICP below:
● Transform a sampled source point by its

estimated relative transformation. The initial
value for this is often taken to be identity

● Project this transformed point on to the target
image plane, thus obtaining the row (r) and
column (c) of the pixel it maps to.

● Project the pixel at (r,c) in the target image
back to the 3D camera space.

● Calculate the point to plain distance between
the transformed point and the matched target
point

● Discard the match if the distance is beyond the
fixed threshold. If not, add to the error metric.

This scheme may result in a faster convergence rate as we decrease the neighborhood
search area. The search window size dictates the accuracy of the solution and the speed of
the algorithm. Increasing the size of the search window results in a higher accuracy but the
speed of execution decreases.

IMPLEMENTED VARIANT : LINEARIZED ICP

In this variant, we replace the baseline's optimization algorithm (Step 6 from Iterative
Closest Point Algorithm) - Levenberg-Marquardt (LM) with Singular Value Decomposition
(SVD).

LM is an iterative technique for optimization of a non-linear least squares problem - a
generalization of linear least squares. SVD, on the other hand is a stable technique for
solving a system of linear equations in one shot.

So, while LM can can be used to optimize more generalized error functions that may be
changing with each iteration (as in ICP), SVD is much quicker, not just because it may
converge in one iteration (we also used it for the same number of iterations as the
baseline), but also because it takes less compute time than LM which has to calculate
Jacobians at each iteration.

1. Bunny Meshes

We use the bunny meshes from the exercise [6] to demonstrate the effects of the different
variants of Iterative Closest Point. Initially, the source (green) and the target (red) meshes
are aligned as below:

2. RGBD Freiburg – xyz

This data was taken from a public dataset from the Computer Vision Group, TUM. [7]. For
this sequence, the Kinect was pointed at a typical desk in an office environment. This
sequence contains only translatory motions along the principal axes of the Kinect, while
the orientation was kept (mostly) fixed. Initially, the source and the target meshes are
aligned as below:

EXPERIMENTAL RESULTS

Combinations of Steps 1,2,6 Completion Time
L2 error from known

correspondences
Output Quality

1. Random Sampling, NN1 and
 LM2

Dataset 1: 0.12035s
Dataset 2: 196.876s

Dateset 1: 0.0157368
Datsset 2: N/A

Registration Quality is good in both
Datasets6

2. Multi-Resolution, NN1 and LM2 Dataset 1: 0.09897s
Dataset 2: 105.661s

Dateset 1: 0.0162046
Datsset 2: N/A

Registration Quality is good in both
Datasets6

3. Random Sampling, Projective
 (Neighborhood of 5 px) and LM2

Dataset 1: N/A
Dataset 2: 133.704s

Dateset 1: N/A
Datsset 2: N/A

Registration Quality is good in both
Datasets6

4. Random Sampling, NN1 and
 SVD3 (1 iteration)

Dataset 1: 0.04029s
Dataset 2: 27.1635s

Dateset 1: 0.13298
Datsset 2: N/A

Fails4 in Dataset 1, Good5 for
Dataset 2

5. Random Sampling, NN1 and
 SVD3

Dataset 1: 0.06189s
Dataset 2: 85.9964s

Dateset 1: 0.0370271
Datsset 2: N/A

Registration Quality is good in both
Datasets6

6. Multi-Resolution, Projective
(Neighborhood of 5 px) and SVD3

Dataset 1: N/A
Dataset 2: 29.106s

Dateset 1: N/A
Datsset 2: N/A

Registration Quality is good in both
Datasets6

1 Nearest Neighbor Search
2 Levenberg-Marquardt
3 Singular Value Decomposition

4 and 5 While SVD (1 iteration) works well with the Freiburg dataset, it fails to completely align the bunny meshes(see Fig 3).
This could be because while in the Freiburg dataset, the input meshes were very close (or rather the initial relative pose was
nearly accurate), but the bunny meshes were quite some distance apart. Repeated iterations of SVD seemed to align both
meshes quite well, however.
6 All the outputs are more or less comparable

Results of scenarios 1, 2 and 5 from the table

Results of scenarios 1,
3, 5 and 6 from the table

CONCLUSION

As noted, using a Multi-resolution approach, Projective
Correspondences and SVD lead to a significant gain in
speed as compared to baseline approach.

In fact, a combination of the three approaches is nearly
seven times faster than the baseline. However, this may
come at a slight cost in quality as observed from the L2
errors calculated, particularly in the case of SVD vs LM.
This was expected as LM can solve much more complex
problems than a linear approach like SVD.

Nevertheless, we believe that the cost in quality is
sufficiently low, making it a very good case for SVD

http://www.cs.tau.ac.il/~dcor/Graphics/adv-slides/ICP.ppt

	Slide 1

