U

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN

Interdisciplinary Project Report

Development of a system that allows
for the semantic segmentation of a 3D
model of a human body into its
constituent parts

Neha Das

0

I

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN

Interdisciplinary Project Report

Development of a system that allows for the semantic
segmentation of a 3D model of a human body into its
constituent parts

Author: Neha Das
Supervisor: Prof. Dr. Nassir Navab
Advisor: Dr. Federico Tombari

Date: July 06, 2018

Acknowledgments

I would like to thank Dr. Federico Tombari, Helisa Dhamo and Keisuke Tateno
for advice and assistance during the course of this project.

Abstract

Development of systems that are equipped to provide a view into a patient’s body
form an essential part of the technological advancements needed to improve medi-
cal diagnosis and reduce invasive surgery. While volumetric imaging of a patient’s
anatomy via Computed Tomography or Magnetic Resonance Imaging have achieved
this goal to an extent, there is a growing need for combining such medical data via
Augmented Reality Systems and Head Mounted Displays with the real-time view of
the patient’s form. Applications of such an implementation include surgery planning
and inter-operative guidance systems.

An essential component of an implementation of the aforementioned Medical Aug-
mented Reality (MAR) System, would be a module that could segment patient’s
form (obtained as a 3D Model) into its constituent body parts and identify the
body part that corresponds to the volumetric medical data so that the 2 models
may be registered.

The implementation of this segmentation module is the main goal of this Inter-
Disciplinary Project. This is accomplished via first segmentating the depth maps
obtained in the process of creating the patient’s 3D model using a Deep Convolu-
tional Neural Network and then combining the labelled images via KinectFusion [20]
to obtain a segmented 3D Model.

vii

Contents

[Acknowledgements|

L2, Contributions

[2._Related Works|

[3. Methodology|

13.1. Depth Map Segmentation|

[3.1.2. MobileNet and Depthwise Separable Convolution|

[3.1.3. Transposed Convolution vs Upsampling with Convolution| . .

[3.1.4. Proposed Architecture for Depth Segmentation|

13.1.5. Implementation Details]
[3.1.6. Training Details]
13.2. Fused 3D Segmented Model|

13.2.2. Combining Segmented Maps| . .
[3.2.3. Extraction of the Body Part|. . .

4. Dataset]

9. Experiments and Results|

[5.1. Depth Image Segmentation|

1p.2. Label Fusion and Body Part Extraction|

vii

xi

DN =

10
10
13
14
15
15
16
16
17
18

19

25
25
28

ix

Contents

6. Future Workl
|6.1. Domain Adaptation|
|6.2. A more sophisticated label fusion technique]

(. _Conclusion|

31
31
31

33
33

37

Contents

Outline for the report

1. Introduction

This chapter outlines the need for an MAR system that can provide a view into the
human body. It also describes the proposed implementation for such a system and
the contribution of this body of work towards the overall goal.

2. Related Works

In this chapter, some of the related techniques that could be utilized for segmentation
of 3D scans are described.

3. Methodology

This chapter describes the methodology used in this body of work for segmentation
of 3D scans. It discusses the theoretical background of these techniques, describes
the actual architecture used and elaborates on some of the implementation details.

4. Dataset

This chapter discusses the creation and the features of the data set used in the
methodology described in above section.

5. Experiments and Results

In this chapter, the results from the above implementation are described.

xi

Contents

6. Future Work

Some ideas about future work in context of the solution presented in this report is
laid out in this chapter.

7. Conclusion

Finally, this chapter summarizes the work done and presents the major conclusions
that could be derived from it.

Appendix

The references and sources for the information that were presented in this report
are shared in this section in addition to the links to the source code

xii

1. Introduction

Development of systems that are equipped to provide a view into a patient’s body
form an essential part of the technological advancements needed to improve medi-
cal diagnosis and reduce invasive surgery. While volumetric imaging of a patient’s
anatomy via Computed Tomography or Magnetic Resonance Imaging have achieved
this goal to an extent, there is a growing need for combining such medical data via
Augmented Reality Systems and Head Mounted Displays with the real-time view of
the patient’s form. Applications of such an implementation include surgery planning
and inter-operative guidance systems.

The result from this Inter-Disciplinary Project is an essential component of such
an implementation. In the following subsections, we will briefly introduce the overall
implementation and the contributions of this work.

1.1. Overall Implementation

The proposed implementation (Figure [1.1]) has several major constituents:

e First, a 3D scan of the patient body is obtained via KinectFusion [20].
e At the same time, a texture mapping of the 3D scan is obtained.

e Simultaneously, each of the depth images acquired during the KinectFusion
run are segmented using a Deep Convolutional Neural Network for semantic
segmentation. These labelled images are then fed back to the KinectFusion
algorithm so that they may be combined to form a segmented 3D Model.

e The body part corresponding to the volumetric medical data is then extracted
using the segmentation labels and registered with the medical data, and fi-
nally the volumetric image is aligned with the patient’s 3D model using the

1. Introduction

transform parameters (“7 Tinect) estimated during the registration step.

1.2. Contributions

The major contribution of this work towards the overall implementation is the de-
velopment of the segmentation module that can label the constituent parts in a 3D
body model. This is performed via segmenting the depth images obtained during
the KinectFusion run using a Deep Neural Network model for segmentation. Each
labelled image is then fed back to a modified version of the KinectFusion algorithm
and combined to form the segmented 3D model of the body.

This work thus constitutes of the following;:
e Investigation of fast deep neural networks for semantic segmentation.

e Based on the investigation from the first step, development of a semantic
segmentation architecture with deep convolutional and deconvolutional layers.

e Investigation of existing datasets/ creation of a dataset for training the above
model.

e Implementation of the inference pipeline in C++ for integration with the over-
all implementation.

e Modification of the KinectFusion algorithm implentation [13] to suit the re-
quirements and integration of the segmentation inference module with it.

1.2. Contributions

’— Textured Model

Segmented Body Part
Kinect Model of Patient D B CT Data of

Patient

|neciTR .
e KinectT
HMD

1&"9‘

World/Reference Frame

Figure 1.1.: Proposed System - It consists of four parts. First, a 3D scan of the patient
is obtained via Kinect Fusion. Then, the 3D scan is segmented into it’s con-
stituent body parts and the point cloud data for the part that is of interest is
extracted. Simultaneously the texture mapping for the 3D scan is obtained.
The final step is proper augmentation of this scan data on to the patient’s
body from a user’s view who will be wearing a HMD. To do so, the trans-
formation between the Kinect scan and the medical 3D scan is obtained via
registering both the point clouds with each other. For proper augmentation of
medical data, a transformation CT 7y that can transform points from CT
frame of reference to the HM D frame of reference i.e viewer’s reference frame
is needed. This is done using the transformations T Txinect » K Trarp.
Image from [14]

2. Related Works

Previous works have approached the problem of segmenting 3D scans of humans
into constituent parts from many different directions.

Many techniques rely on estimates of human body proportions. For instance,
[28] introduces a method to segment 3D point clouds based on an amalgamation of
heuristic approaches, each of which determine a key location in the human body. A
similar approach is followed by [3], where 15 key locations such as head, torso and
so on are estimated using PCA (Principal Component Analysis; [23], [I5]) of the 3D
point cloud and heuristics that describe the position of other body parts relative to
the head and torso. However, hand-crafted guesstimates such as those used in these
techniques often yield sub-optimal results since they may not be as generalized with
respect to human pose or body shape.

In contrast, there exist supervised learning techniques like SCAPE ([2]), that
result in creation of a deformable model for 3D scans by training its parameters on
a dataset of registered 3D scans with multipe shapes and poses. This model can
then be fit to any incoming 3D scan during inference time, even if it is a partial scan.
While this method may not yield the exact segmentation map of the point cloud,
obtaining a segmentation shouldn’t be hard if the corresponding template has been
segmented. However, these methods often need some kind of manual initialization
where a sparse number of markers have to be identified on the input scan prior to
the registration process.

Accurate Non-rigid registration techniques may also yield a similar solution. They
can be used to register an input 3D scan with a template. Recent advances in the
correspondence matching problem via deep learning [27] have increased the accuracy
of this technique.

The method proposed in this body of work uses a 3D reconstruction technique such
as KinectFusion and in addition to fusing the depth maps for the human body from
different viewpoints, also segments the depth images to create segmentation maps

2. Related Works

and fuses them. For the reconstruction of the segmented 3D Model to be real-time,
the segmentation output for the depth images have to be fast and accurate.

A number of methods employ supervised learning techniques for this purpose. The
pioneering paper by Shotton et al. [26] proposed the use of Deep Random Forests
to perform a per pixel classification of the input depth map. Other techniques
([22], [25]) have improved upon these results by using Deep Convolutional Neural
Networks and Deconvolutional Layers for semantic segmentation of body parts from
depth images.

This project will use a U-Net [24] like architecture for this purpose. U-Net has
been known to have a small inference time and yield accurate results for semantic
segmentation tasks from RGB images. To reduce the inference time, we also in-
vestigate the effect on compute time on substitution of the convolutional units in
the encoder by depthwise separable convolutions, which can theoretically reduce the
computation time by 8-9 times.

3. Methodology

As indicated in the previous chapters, the adopted methodology for segmentation
of 3D scans follows two steps:

e Segmentation of the incoming depth maps from a depth camera.

e Fusion of the segmented depth maps in real time to create a segmented 3D
scan.

In this chapter, we will explore the background and technical details of these two
steps.

3.1. Depth Map Segmentation

Semantic segmentation is an image processing task which assigns a segmentation
label to each pixel in an image. This task has wide ranging applications across
many industries such as automotive, manufacturing and healthcare.

Before the advent of deep learning, automatic segmentation was usually performed
by computer vision based methods such as region-growing/merging techniques ([1],
[6]), implementations for solving Mumford Shah [19] functionals like Chan-Vese Level
Set Method [7], Diffusion Snakes [12] and others. In the class of Machine Learning
methods, Random Forest Classifiers [26] were popular.

There exist several architectural choices for building a deep learning model for
semantic segmentation [9]:

e Image Pyramid
In these models, the input is scaled to multiple resolutions and Deep Convolu-
tional Neiral Networks are applied to extract features ranging from aggregate

3. Methodology

to detailed and merge them eventually to get a contextual module from which
the segmentation map is derived. However, these models are not quite scalable,
as they become huge for deep networks.

Encoder-Decoder Models

These models have a cascade of convolutional layers with decreasing output
resolutions. Typically, strides larger than one are used intermittently in the
cascade to decrease the resolution by a large factor and aggregate informa-
tion. The convolutional cascade is followed by a decoder structure composed
of de-convolutional or transposed convolutional layers that recover spatial in-
formation again. Skip connections may also be added between the encoder and
decoder units in order to assist the decoder units in learning the spatial infor-
mation lost through the pooling operations. Fully Convolutional Networks [1§]
presented the first architecture in this category. U-Net [24] is another popular
choice from this category and will be the choice of architecture in this project.

Dilated/Atrous Convolutions

While pooling/multi-strided layers help aggregate information across the spa-
tial dimensions of the image, they hamper the semantic segmentation task since
they lose spatial details with each pooling/multi-strided step. Atrous/Dilated
Convolutions instead opt for a dilated kernel and preserve the density of the
feature layer while adopting a wider field of view for the kernels used. This
helps prevent the loss of spatial details as the architecture flow approaches the
output. Architectures proposed by [30] and [8] fall under this class.

Small Resolution D
=

LT £ —— | i
2x uj
P L A = A7
I I T lzxup
L7 = ?’ —-? LT e Z 3
] ! 2xup B 1
L == — Q

Image Scale 1 Image Scale 2 Image Image Image

(a) (b) (c)

Figure 3.1.: (a) Image Pyramid (b) Encoder-Decoder Architecture (¢) Atrous Convolu-

tions. All images are taken from [9]

While Dilated convolutions may seem like the best choice for segmentation tasks,
an architecture utilizing them such as [§] are not without certain drawbacks [I7]. The

3.1. Depth Map Segmentation

64 64
128 64 64 2
input

image |#
tile

¥

ol | OUtPUL
~| segmentation

& & map

392 x 392

|
)

572 x 572
570 x 570
568 x 568

' 128 128
256 128

2842

256 256 '
20 250 512 256

>
fio
o)
o

= W™ =»conv 3x3, ReLU
t s 0= copy and crop

' 512 512 1024 512
-~ o el § max pool 2x2
o ° ¥ 2 45 B 4 up-conv 2x2

1024
= - -
= s % =» cOnv 1x1
=]

o~

Figure 3.2.: U-net architecture [24] (example for 32x32 pixels in the lowest resolution).
Each blue box corresponds to a multi-channel feature map. The number of
channels is denoted on top of the box. The x-y-size is provided at the lower
left edge of the box. White boxes represent copied feature maps. The arrows
denote the different operations

first is that they have a large memory footprint and have to be computed at each step
for large resolution maps (since we do away with most pooling layers) and secondly,
the architectures utilizing these constructs often have to output segmentation maps
that are 1/8th the size of the original input image.

Recently, RefineNet [I7], an encoder-decoder module has been introduced to
counter the usual fallacies of encoder-decoder models through Refine-net modules
(See cited paper). Being an encoder-decoder network, they also donot suffer from
the limitations of dilated convolutions. However, as stated before, we will be adopt-
ing a U-Net architecture since our goal is to be fast as well accurate while performing
our segmentation task and Refine-net modules add to the computational weight.

3. Methodology

3.1.1. U-Net

U-Net [24] adapts the semantic segmentation architecture from the paper Fully Con-
volutional Networks [I8] to the field of biomedical images. It has an encoder-decoder
architecture, where the encoder contains a cascade of convolutional blocks. Each
block contains multiple convolutional layers and operates on different resolutions of
the image. A new resolution (reduced by a factor of two) is obtained by keeping
the stride of the first convolutional layer of the block as two. The decoder con-
sists of simiarly stacked deconvolutional blocks, where the first layer is transposed-
convolutional layer with stride two and the next couple of layers in the block are
convolutional layers. Each convolutional block has a corresponding deconvolutional
block and the output from each convolutional block is concatenated with the output
from the first layer of each deconvolutional block to form skip-connections. A layout
of the architecture can be seen in Figure

3.1.2. MobileNet and Depthwise Separable Convolution

MobileNets were introduced in [I6] by Howard et al. from Google Inc as a solution
to the need for smaller and faster convolutional networks that can run on a slower
processing unit (such as a mobile phone) and yet yield comparable results. Their
prime feature was the incorporation of depthwise separable convolutions that have
lower latency and size than regular convolutional units while yielding comparable
numbers for accuracy. Additionally, they also featured two hyperparameters that
help compress the network size further in a flexible manner. These constructs are
discussed briefly in the subsections below:

Depthwise Separable Convolution

Standard Convolution Operations (with a Kernel size of D X D x M x N and
output size Dr x Dp x N) in MobileNet are replaced by a factorized operation called
the Depthwise Separable Convolution. The input is first convolved depthwise with
a kernel of dimensions Dg x Dg x 1 and followed by a pointwise convolution with
a kernel of size 1 x 1 x N. The kernels used are illustrated in Figure [3.3

This reduces the computation cost of the convolution operation from

Dk -Dy-M-N-Dp-Dg (3.1)

10

3.1. Depth Map Segmentation

-4

~—N —

ID@ @F@q - (7

(b)

()

Figure 3.3.: Kernel representation for (a) Standard Convolution, (b) Depthwise Convolu-
tion Operation and (c¢) Pointwise Convolution Operation. (a) is replaced by
(b) and (c) in Mobilenets. Figures from [16].

to

Dg-Dg-M-Dp-Dp+M-N-Dp-Dp (32)

The full operation set for regular convolutional layers vs depthwise-separable con-
volutional layers is illustrated in Figure [3.4]

As evident from Figure [3.4] the depthwise separable convolutions in the Mo-
bilenet architecture have twice the number of non-linear activations and batch-
normalization operations as compared to their regular convolutional counter-part.
In the experiments performed as a part of this work, it was observed that these addi-
tional batch-norm operations almost nullified the computational benefits reaped via
the structure of depthwise separable convolutions. As a consequence, the interme-

11

3. Methodology

| 3x3 Conv | |3x3 Depthwise Convl
| o | BN |
| ReILU [| ReILU |
| 1x1 (I'_‘,onv |
I
| RoLU]

Figure 3.4.: Regular Convolutions vs Depthwise Separable Convolutions with BatchNorm
and ReLu Activation. In MobileNets, the depthwise separable convolutions
contain an intermediate non-linear activation and a batch normalization layer
in addition to a similar unit at the end of the operation. Figure from [16]

diate layers were removed from our formulation of the full depthwise separable con-
volutional layer set. The paper on Xception ([I0]) provides some empirical evidence
to support the theory that removing these intermediate layers will not adverserly
affect the performance of the network. Infact, it shows that the network converges
faster and has more accuracy. The paper speculates that when the non-linearity is
applied on an convolution of low depth (in this case, of size one), it may result in
the loss of information which can lead to a decrease in accuracy.

In addition to the depthwise separable convolutions, the width multiplier and
resolution multiplier hyperparameters can be adjusted in order to further compress
the network at the expense of higher accuracy:

Width Multiplier

Width Multiplier («) is a hyperparameter for reducing the number of the input and
output filters, thus making them thinner. [I6] shows empirically that a decrease in
the value of « leads to a smooth drop in the accuracy of the model until « reaches
0.25 and the architecture is made too small.

12

3.1. Depth Map Segmentation

Resolution Multiplier

Resolution Multiplier (p) is hyperparameter that allows one to change the output
resolution by a factor of p?. This parameter actually corresponds to the resolution
of the input image. Thus it can be implicitly set by setting the resolution of the
input image.

3.1.3. Transposed Convolution vs Upsampling with Convolution

The deconvolution operation in context of convolutional Neural Networks is not
actually the deconvolution operation defined in a mathematical sense. In the context
of images and CNNs, it refers to an operation that can retrieve the original image
resolution - i.e, before a convolution operation was performed. Such an operation
is needed in a U-Net based semantic segmentation network (see Figure , like
the one proposed by this paper. This is usually done via Transposed Convolution
Operation.

Transposed Convolution is a parametrized operation that can learn the correct
upsampling of an image. In Tensorflow, it corresponds to the transpose or the
gradient of a convolution operation with respect to its inputE]. The illustration in
Figure demonstrates the intuition behind this operation.

For deconvolving to a resolution that is twice the size of the input, usually a
transposed convolution with stride two is used. However, this may result in the
appearance of checkerboard like artifacts if the kernel size is not divisible by the
stride length [2I]. These effects may be countered by either using a stride length
that can fully divide the kernel length - for instance, with a stride length of one and
an appropriate kernel size, any desired resolution can be achieved. However, using a
stride length of one may not be feasible as it nearly doubles the number of network
parameters. Another option is to use an upsampling filter (devoid of learnable
weights) such as the bilinear interpolation filter or the nearest neighbor filter followed
by convolutions of stride one. A comparison between the model outputs from the
different constructs is shown in Figure [3.6

We compare results and runtime for both networks with two-strided transposed
convolutions and upsampling with convolutions.

!'See tf.nn.conv2d_transpose: https://www.tensorflow.org/apiqocs/python/tf /nn/conv2d_transpose

13

3. Methodology

| | |
HEEEC EH] (/EEER (" EEEC 00 OaEm 00
EEEE OO0 OEm OO EEEC] E0 (/jaEE (.

HEN] m |] | |
HL EHEER([N (/EEER [EEE0 00 [(O-EE
O mEmf] 00O e B0 EEEf [(/aEE
COOE |- HER] o]|

Figure 3.5.: The top row shows the effect of a convolution operator with a 3x3 kernel on
an input of dimension 4x4. The bottom row shows the effect of a transposed
convolution operator with a 3x3 kernel on an input of dimension 2x2. The
blue grids represent the input, whereas the green grids represent the output.
In Tensorflow, the transposed convolution operator exactly equivalent to the
backpropagation operation on a convolutional layer such that the input to
transposed convolution corresponds to the gradient of the output layer, and
the output from the transposed convolution corresponds to gradient of the
input layer of the convolution operation.

3.1.4. Proposed Architecture for Depth Segmentation

The task of depth segmentation of human bodies is evaluated on the following ar-
chitectures in this body of work:

e unet
A modified version of U-Net adapted to the input image resolution used in
this project. This model has 4 convolutional and 4 deconvolutional blocks.

e unet-mobile
This model is the same as unet except, instead of standard convolutional layers,
separable convolutional layers have been used. The width multiplier and the
resolution multipliers are set to 1.0 for the separable convolutions.

Additionally, we reduce the resolution of the images before we feed them into the
network from 640x480 to 160x120. This is done to speed the network up. During
prediction time, the nearest neighbor interpolater is used to upsample the output
labels to 640x480.

14

3.1. Depth Map Segmentation

Figure 3.6.: Predictions after training a model with (a) 2 strided transposed convolutions,
and (b) upsampling + convolution, on a single image for 20 iterations

3.1.5. Implementation Details

The training and evaluation pipelines as well as the network model have been imple-
mented in Python v3.5. Both unet and unet-mobile were implemented in Tensorflow
v1.7 and utilize the Tensorflow Slim Framework, which encapsulates a lot of low level
details while defining the layers and makes the implementation more readable and
maintainable.

The data-pipeline makes use of queuing with multi-threading via Tensorflow Queuerun-
ners to deliver batches of data to the training and evaluation pipelines. This allows
for continuous retrieval of batches which results in a smooth operation.

Once the network is trained to convergence, the training graph is frozen along
with the final weights to a Tensorflow Protocol Buffer format.

The final inference while retrieving depth maps from the Kinect sensor is per-
formed via loading the frozen graph in the Tensorflow C++ API.

3.1.6. Training Details

Both models are trained via the Adam Optimizer with an initial learning rate of
le — 4 and a decay rates of 0.9 and 0.999. Batches of 50 are used for training.

15

3. Methodology

The batch normalization decay rate is kept at 0.9 and the dropout probability for
retaining the node is kept at 0.999.

3.2. Fused 3D Segmented Model

The previous section describes the deep neural network that outputs a segmented la-
bel map for every depth map that is inputted. These label maps are used in conjunc-
tion with their corresponding depth maps to create a 3D model using KinectFusion
[20], which is described below:

3.2.1. KinectFusion

KinectFusion is a realtime Simultaneous Localization and Mapping (SLAM) algo-
rithm that can fuse the stream of depth maps obtained from a low-cost sensor such
as Kinect into a 3D reconstruction of the scene which is updated using a Trun-
cated Signed Distance Function (TSDF') representation and rendered as a mesh via
raycasting. It comprises of the following components:

e Surface Measurement
The incoming depth maps are processed via a bilateral filter to produce dis-
continuity preserving depth maps with reduced noise. These modified depth
maps are then used to produce vertex maps by back projecting the pixels into
the sensor frame of reference. Normal maps are also produced by taking the
cross product of neighboring vertices in the vertex maps.

e Pose estimation
With the processing of each depth map, the sensor pose relative to the global
map frame is estimated. Here, global map refers to the fused TSDF represen-
tation maintained and modified with each cycle of the KinectFusion algorithm.
Pose estimation is done via point-to-plane ICP (Iterative Closest Point) [4].

e Surface Reconstruction
Via the signed distance function, a 3D space can be represented in terms of
their closeness to the surface enclosed by it. The space inside the surface is
increasingly negative as it moves away from the surface, while the space outside
has increasing positive values. The function value for the surface points is 0.

16

3.2. Fused 3D Segmented Model

TSDF, on the other hand, places such restrictions only on the space close to
the surface (specified by a thresholding value). For points beyond this range,
the TSDF wvalue is truncated to a maximum g or a minimum, —u. Using the
sensor positions obtained from the pose estimation step and the filtered depth
values, TSDF for each cycle is calculated and then fused with the global TSDF
using a weighted average.

e Surface Prediction
The dense representation of the global map is finally rendered via per pixel
raycasting in the frame of reference provided by the current estimate of the
sensor’s position.

Measurement |V, Pose Update Sk Surface
N, Estimation Tg +| Reconstruction Tg I Prediction
Input - Compute ICP of Predicted Integrate Surface |=== Ray-cast
Surface Nertex and and Measured Measurement TSDF to Compute
Normal Maps Surface into Global TSDF Surface Prediction

A

Tors Vier Nes

Figure 3.7.: Flowchart describing the KinectFusion algorithm. Figure taken from [20]

3.2.2. Combining Segmented Maps

As a part of the overall implementation, KinectFusion was implemented by Christian
Diller [13]. This implementation also included the fusion of the RGB images obtained
in conjunction with the depth images by kinect so that a colored 3D model could
be obtained. The coloration for each 3D point in the global intrinsic representation
(TSDF) is obtained via a weighted average of all the RGB values of the pixels that
were back-projected to that 3D point.

A similar methodology is applied while combining the color-coded segmented
depth maps - Each body part is represented by an RGB value. Each vertex of
the combined 3D model is colored by a weighted average of the colors for corre-

17

3. Methodology

sponding pixels in each of the depth maps that influences that vertex. The influence
of the background however (RGB value = 0,0,0) is not taken into account while
calculating the average.

3.2.3. Extraction of the Body Part

Volumetric Medical Scans usually contain some meta-data that indicate the body
part they belong to. This information can allow the system to automatically select
a body part or a combination of body parts. The 3D point cloud of the body part is
selected in the system by selecting all the vertices in the 3D model that correspond
to a particular range of colors (specified in Chapter 5). A cleaner solution would
have been to select a mode value for each of the vertices, but wasn’t implementable
due to GPU memory constraints.

18

4. Dataset

For the purpose of training and evaluating the models described in the previous chap-
ter, we create a dataset of depth images of human figures alongside their segmen-
tation labels. This was mainly motivated by the lack of publicly available datasets
suited to our needs.

We use registered /aligned 3D scans derived from the CAESAR dataset provided
by [29] for creating our data corpus. There are over 3000 scans in the dataset evenly
divided into male and female subjects. For the purpose of this work, each of these 3D
scans are factorized into 96 depth images taken from different angles, focal lengths
and positions using the open source software Blender [5]. This ensures that the
dataset is well augmented and the model is equipped to deal with human figures
positioned randomly in the frame of camera and also any occluded body parts, if
applicable. The pseudocode in Listing describes the choice of camera angles,
position and focal length for generation of these 96 depth images.

In addition to the depth images, RGB images representing the label maps for each
depth image are also generated. We accomplish this via the following steps:

e Color all the 3D meshes In step 1, we paint the 3D meshes so that the
RGB value for each vertex is representative of the body part it belongs to. For
this we do the following;:

— Transform all the 3D meshes obtained from [29] from OBJ file format to
PLY file format, since OBJ files cannot store vertex color information.

— Pick a single 3D mesh and use the vertex paint tool to color all the vertices
in accordance with the body parts they belong to in MeshLab [11].

— Since all the meshes are registered or aligned, vertex colors are easily
transferable from one mesh to corresponding vertices in other meshes.

19

4. Dataset

o Extract labelled images RGB images with per pixel label are extracted
from the colored 3D scans using the same combinations of camera positions,
angles and focal lengths as for the depth images via blender [5]

The above steps are illustrated in the following figure:

N

3D scans™ derived Segmented scans -
from CAESER dataset Ground Truth

Segmentation labels with corresponding depth maps
Parameters:

Pose, Camera
position, focal
lengths

Figure 4.1.: Caption

In the current implementation, a total of 11 segmentation classes are defined.
These along with their RGB representatives for labels are as follows:

1. Background - (0,0,0)

2. Torso - (0,255.0)

3. Head - (0,0,255)

4. Upper Left Arm - (255,0,0)

5. Upper Right Arm - (100,0,0)
6. Lower Left Arm - (255,0,255)
7. Lower Right Arm - (100,0,100)
8. Upper Left Leg -

9. Upper Right Leg - (100,100,0)
10. Lower Left Leg -
11. Lower Right Leg - (0,100,100)

Some examples of the depth and labelled images can be seen in the following
figure:

20

Figure 4.2.: Label Maps and corresponding Depth Maps

1 # number of camera angles around pos_empty

2> NUMBER.OF_VIEWS = 4

3 # the offset for first camera angle depth rendering for a ply

4+ OFFSET DEGREE FROM START = 1

5 # scale of the 3D scan. We scale down the 3D scan in the blender
6 # environment to keep the depth values close to the real world
7 OBJECTSCALE = 0.1

s # determines the range of the random values from which pos_empty,
and camera position are picked

10 RANDOM_SHIFT MULTIPLIER = 0.1

11 # pos_empty is th 3D position towards

12 # which the camera is directed

13 # pos_empty x positon : fixed position
14 # and min & max for random choices
15 EMPTY MINX = —0.1

16 EMPTY MAXX = 0.1

17 # pos_empty y positon: fixed position
18 # and min & max for random choices

19 EMPTY MIN.Y = —0.05

20 EMPTY MAXY = 0.05

1 # pos_empty z positon: fixed position
and min & max for random choices
EMPTYMINZ = —0.1

EMPTY MAXZ = 0.05

camera position: fixed position and
; # min & max for random choices
CAMERA ROTATION_AXIS = 7’

COORDFIX = 0.7

N

NN NN NN N

o

4. Dataset

20 COORDMIN 0.5
30 COORDMAX = 1.0
31

32 # File containing the 3d scan in .ply format

33 fileName = ’'3d_Scan.ply’

34

35 # the set of camera positions to iterate over. 1 fixed camera
36 # position is chosen along with a random position from a

37 # uniform distribution in the range [COORDMIN, COORDMAX)

38 cam_pos = create_camera_positions (COORDMIN, COORDMAX, COORD_FIX)
39

40 # the set of pos_empty to iterate over.. 1 set of fixed

41 # x,y,z positions (central) for pos_empty is chosen along

42 # with 1 random position for x, 1 random position for y, and

43 # 2 random positions from z (upper and lower halves of body)

14 empty_pos = create_empty_positions (EMPTY MIN.X, EMPTYMAXX,

45 EMPTY MIN.Y, EMPTYMAXY,

46 EMPTY_MIN Z, EMPTY MAXZ)

a7

4s for itr_pos in range (0, len(cam_pos)):

49

50 # iterate over all the camera positions

51 position = cam_pos[itr_pos]

52

53 # Camera position is set to chosen position

54 set_camera_position (position)

55 focal_lengths = get_camera_focal_lengths (CAMERA FOCAL FILE)

56 for itr_focals in range(0, len(focal_lengths)):

58 # iterate over all the camera focal lengths

59 focal = focal_lengths[itr_focals]

60

61 # Camera focal length is set to chosen focal length

62 set_camera_focal_length (focal)

63 for itr_empty_pos in range(len (empty_pos)):

64

65 # iterate over all the camera focus points

66 pos_empty = empty_pos[itr_empty_pos]

67 if validate_file (fileName, VALID FILE_ EXTENSION) :

68 clear_scene ()

69 file_path = os.path.join (INPUT.DATA DIR, fileName)

70 import_file (file_path)

71 index = (itr_pos * len(focal_lengths) + itr_focals) =x
len (empty_pos) + itr_empty_pos

72 outFileBase = ’human-’ + str(itr_file)

73

74 # render depth map for ”"NUMBER.OF_VIEWS” equidistant

22

75 # angles , starting with ”offset_start_degree”, with

76 # the camera directed at position ”pos_empty”

77 rotate_empty_and_render (fileName, outFileBase, index x
NUMBER.OF_VIEWS, offset_degree_start , pos_empty)

78 itr _focals_start = 0
79 itr_pos_start = 0
80

81 # the starting offset for camera angles is different for each 3D scan

g2 # in order to cover all 360 degrees
83 offset_degree_start = offset_degree_start + OFFSET_DEGREEFROMSTART

Listing 4.1: Pseudo-code for generating depth images from 3D scan

23

5. Experiments and Results

5.1. Depth Image Segmentation

We train both the unet and unet-mobile model ensembles on 23040 depth-label pairs
derived from a little less than 300 different scans provided by [29] for 100 epochs
with a batch size of 50. Training loss graphs can be seen in Figure [5.1

unet-transposed unet-resized unet-depthSep-transposed
—— Traning fom 00012 — Training
oooe 0.0010
aso10
Hocoas oo § aoos
00004 oomos o004
asen2 asen2 -
0.0000 L 1 L 0.0000 0.0000 “‘L L A L
T TRT T ez ww o T ok aww e
Yoauen
) unet-depthSep-transposed- unet-depthSep-resized-
unet-depthSep-resized nolLayers noLayers
soons — s
9.0005 " o
00002 00002 4 0.0002
L L
T T e ea—— T T T T ke wew e
eraton rsten araton

Figure 5.1.: Graph for Training Loss

25

5. Experiments and Results

The models trained are listed in the Table [B.1]

Models Convolution type Upsampling 1L,

unet-transposed Regular Transposed N.A

unet-resized Regular Resized N.A
unet-depthSep-transposed Depthwise Separable Transposed Present
unet-depthSep-resized Depthwise Separable Resized Present
unet-depthSep-transposed-noLayers Depthwise Separable Transposed Absent
unet-depthSep-resized-noLayers Depthwise Separable Resized Absent

Table 5.1.: Models for semantic segmentation. Ly, indicates the presence or absence
of the normalization and activation layers between depthwise and pointwise
convolution operations.

These models are evaluated on a test set from the same data distribution. The
accuracy metrics used are Intersection Over Union and per-pixel accuracy. Table
(.2 lists these evaluation metrics.

Models Acc. 10U CPU GPU CPU GPU ParamsFLOPS
Time; Time; Time; Time, (mil) (bil)
unet-transposed 96.338 86.512 40.833 1.761 328.072 9.792 24.39 23.79
unet-resized 96.074 85.669 43.546 1.802 319.553 9.483 23.62 23.14
unet-depthSep-transposed 96.950 86.766 18.476 1.301 173.305 14.869 15.43 18.11
unet-depthSep-resized 96.960 87.369 20.131 1.298 182.461 10.7 15.01 16.97
unet-depthSep- 95.800 85.111 14.993 1.299 89.528 7.302 15.43 18.11
transposed-noLayers
unet-depthSep-resized- 95.826 85.160 17.239 1.215 147.411 7.363 15.01 16.97
noLayers

Table 5.2.: Evaluation metrics (Acc. - Accuracy, IOU - Intersection Over Union), Inference
time (Time; the time taken for running a batch of 200 images in seconds and
Times is the time taken for running a batch of a single image over 200 iterations
in milliseconds) , number of parameters (Params) in millions and number of
FLOPS in billions.

26

5.1. Depth Image Segmentation

As you can see from Table architectures utilizing depthwise separable con-
volutions instead of regular convolutions incur far less processing time on CPU
compared to the latter. While the same should be true for GPUs as well, the cur-
rent implementations of depthwise separable convolutions do not fully utilize their
processing powerE] and haven’t been able to achieve a similar speedup in computa-
tion. In addition to a boost in performance, depthwise separable convolutions have
far lower number of parameters than the regular ones, hence larger batches of data
can be trained together if needed. These performance benefits occur even though
the accuracy of the network remains, more or less, the same.

Figure [5.2 shows the prediction results for 2 images taken from the test partition
of the synthetic dataset on which all models were trained.

unet-depthSep unet-depthSep
unet-depthSep- unet-depthSep- -transposed- -resized-
Depth Image Ground Truth unet-transposed unet-resized transposed resized nolayers nolLayers

Figure 5.2.: Segmentation results for depth images from the test partition of the synthetic
dataset on which all the models were trained on.

Figure [5.3] shows the prediction results for 4 images taken from a real dataset
aquired using Kinect V1

Note from the prediction results shown in Figure and that while the
networks perform reasonably well on depth images sampled from the dataset created
artificially using scans from [29] and the blender - a part of which is used for training
the networks - their performance worsens considerably on real depth data from
Kinect V1 camera.

A reason for this may be that these images are sampled from different distribu-
tions. Moreover, the depth images captured by the Kinect device are not perfect.
They often have holes and are noisy. A potential solution to this predicament could
be hand-labelling some of the data acquired via Kinect and using them for training

https://devtalk.nvidia.com/default /topic/1025870/jetson-tx2/depthwise-convolution-is-very-
slow-using-tensorrt3-0/

5. Experiments and Results

unet-depthSep- unet-depthSep-
unet-depthSep-t unet-depthSep-r transposed- resized-
DepthImage RGB Image unet-transposed unet-resized ransposed esized noLayers noLayers

- ‘ “::“%m n n
e
T
aEa /] \ =i
oy
| . i . n
- ok . . -
s

Figure 5.3.: Segmentation results for depth images taken by Kinect V1.

44

too.

Also, from the results, we can see that the checkerboard artifacts are not as visible
as before training for networks with transposed convolutions. Resizing 4+ convolution
however, still has a benefit over transposed convolutions when you can replace the
convolution operation with a depthwise separable convolution operation as it may
result in the reduction of parameters (See Table [5.2)).

5.2. Label Fusion and Body Part Extraction

Figure [5.4] shows the results of fusing the label maps onto the 3D model and ex-
tracting a body part using the vertex color information for two sets of depth maps
acquired via Kinect. The point cloud for the requisite body part is acquired by
collecting the vertices whose RGB value lies within a range determined by the color
of the label (specified below):

Background - (]0,50),[0,50),]0,50))

Torso - ([0,50),[177,255],[0,50))

Head - ([0,50),]0,50),[177,255))

Upper Left Arm - ([177,255],]0,50),[0,50))
Upper Right Arm - ([50,177),[0,50),[0,50))

AN

28

5.2. Label Fusion and Body Part Extraction

6. Lower Left Arm - ([177,255],0,50),[177,255])
7. Lower Right Arm - ([50,177),[0,50),[50,177))
8. Upper Left Leg - ([177,255],[177,255],[0,50))
9. Upper Right Leg - ([50,177),[50,177),[0,50))
10. Lower Left Leg - (]0,50),[177,255],[177,255])
11. Lower Right Leg - ([0,50),[50,177),[50,177))
Extract . Extract |
Body Part , 2 ¢, Body Part > ,l
Point Cloud ;ontaining o & Sle]:{]i::gslozﬁl;(;:g:intiﬂg
vertices only from the head
bl head
3D Point Cloud with 3D Point Cloud with
fused segmentation fused segmentation

labels labels

Figure 5.4.: Fusion and extraction results for depth images taken by Kinect V1.

29

6. Future Work

6.1. Domain Adaptation

As can be seen from results in Figure [5.3] while the prediction of segmentation
labels on the data from Kinect is not random, it is still not as good as it is on
the synthetically created dataset. An attempt to correct this behavior will possibly
require the investigation and implementation of domain adaptation techniques. One
possible solution to this is augmentation of the training dataset with hand-labelled
depth images acquired using a Kinect sensor.

6.2. A more sophisticated label fusion technique

Averaging over the RGB values of the labels applicable for each vertex in the 3D
model is a rather crude method and forces us to manually choose a range of values
that define a label for a vertex. This is a rather difficult task since there is a high
chance that these ranges overlap. A better method may be to take the mode of the
labels applicable to each vertex in the 3D model. However, as pointed out before,
limited GPU memory hurdles the implementation of this technique. A possible
solution could be down-sampling the vertices and color them using modes and then
apply a nearest neighbor policy. The uncertainty with which a segmentation label
is predicted (by using a softmax layer over the logits in the network) could also be
taken into account for better results.

31

7. Conclusion

In this body of work, we proposed a system for segmenting 3D Human Models into
constituent body parts. Our proposed system consisted of two major components
- a Deep Neural Network based on U-Net with depthwise separable convolutions
for segmenting 2D depth maps and a modified implementation of KinectFusion[20]
for fusing the predicted segmentation label maps into a segmented 3D Model. Due
to the lack of suitable datasets for training our models, we created our own using
3D scans derived from the CAESER dataset by [29] and the Blender Software [5].
We compared different segmentation models in this work and presented empirical
results and qualitative discussion showing the advantages of U-Nets with depthwise
separable convolutions over regular U-Nets, especially in terms of latency - for nearly
the same accuracy, our experiments showed a decrease in computational latency by
nearly 25% on GPU and by nearly 47% on CPU for U-Nets with depthwise seperable
convolutions over regular convolutions. We further showcased the results from fusing
the predicted labels to create a segmented 3D model from a dataset of real depth
images (collected using Kinect) and showed how to extract a body part from it.

33

A. Additional Information

A.1. Source Code

The source code of this project can be accessed from the following repositories :

e Data collection and Training pipeline for segmentation -
https://gitlab.lrz.de/ga83tuc/segmentation /tree/master

e Segmentation pipeline c4++ - https://gitlab.lrz.de/ga87yiq/mart /tree /master /segmentation

A.2. Docker Image

A docker image with all the installed dependencies for inference (not training) is
available here :

e https://hub.docker.com/r/nehal91091 /idp-environments,/

35

Bibliography

1]

2]

Rolf Adams and Leanne Bischof. Seeded region growing. IEEE Transactions
on pattern analysis and machine intelligence, 16(6):641-647, 1994.

Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim
Rodgers, and James Davis. Scape: shape completion and animation of people.
In ACM transactions on graphics (TOG), volume 24, pages 408-416. ACM,
2005.

Jilliam Maria Diaz Barros, Frederic Garcia, and Désiré Sidibé. Real-time human
pose estimation from body-scanned point clouds. In VISAPP (1), pages 553~
560, 2015.

Paul J.; N.D. McKay Besl. A method for registration of 3-d shapes”. iecee
trans. on pattern analysis and machine intelligence. los alamitos, ca, usa: leee
computer society. 14 (2): 239-256. doi:10.1109/34.121791, 1992. URL: https:
//ieeexplore.ieee.org/document/121791/.

Blender. Open-source 3d computer graphics software. URL: https://www.
blender.org/.

Claude R Brice and Claude L Fennema. Scene analysis using regions. Artificial
intelligence, 1(3-4):205-226, 1970.

Tony F Chan and Luminita A Vese. Image segmentation using level sets and the
piecewise-constant mumford-shah model. In Tech. Rep. 0014, Computational
Applied Math Group. Citeseer, 2000.

Liang-Chieh Chen, George Papandreou, lasonas Kokkinos, Kevin Murphy,
and Alan L Yuille. Deeplab: Semantic image segmentation with deep con-
volutional nets, atrous convolution, and fully connected crfs. arXiv preprint
arXiw:1606.00915, 2016.

37

https://ieeexplore.ieee.org/document/121791/
https://ieeexplore.ieee.org/document/121791/
https://www.blender.org/
https://www.blender.org/

Bibliography

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[20]

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam.
Rethinking atrous convolution for semantic image segmentation. arXiv preprint
arXiw:1706.05587, 2017.

Frangois Chollet. Xception: Deep learning with depthwise separable convolu-
tions. arXww preprint, pages 1610-02357, 2017.

Visual Computing Lab ISTT CNR. Meshlab. http://meshlab.sourceforge.net/.

Daniel Cremers, Florian Tischhauser, Joachim Weickert, and Christoph
Schnérr. Diffusion snakes: Introducing statistical shape knowledge into the
mumford-shah functional. International journal of computer vision, 50(3):295—
313, 2002.

Christian Diller. Mart: kinect_fusion. |https://gitlab.lrz.de/ga87yiq/
mart) 2017-2018.

Sumit Dugar. Development of a system that allows registration of segmented
point cloud to patient ct data and provide augmentations. 2018.

Harold Hotelling. Analysis of a complex of statistical variables into principal
components. Journal of educational psychology, 24(6):417, 1933.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiw:1704.04861, 2017.

Guosheng Lin, Anton Milan, Chunhua Shen, and Ian Reid. Refinenet: Multi-
path refinement networks for high-resolution semantic segmentation. In IEEFE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3431-3440, 2015.

David Mumford and Jayant Shah. Optimal approximations by piecewise smooth
functions and associated variational problems. Communications on pure and
applied mathematics, 42(5):577-685, 1989.

Richard A. Newcombe. Kinectfusion: Real-time dense surface mapping

38

https://gitlab.lrz.de/ga87yiq/mart
https://gitlab.lrz.de/ga87yiq/mart

Bibliography

[21]

[22]

[23]

[24]

and tracking, 2011. URL: https://www.microsoft.com/en-us/research/
wp-content/uploads/2016/02/ismar2011. pdf.

Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and
checkerboard artifacts. Distill, 2016. URL: http://distill.pub/2016/
deconv-checkerboard, doi:10.23915/distill.00003.

Gabriel L Oliveira, Abhinav Valada, Claas Bollen, Wolfram Burgard, and
Thomas Brox. Deep learning for human part discovery in images. In Robotics
and Automation (ICRA), 2016 IEEE International Conference on, pages 1634—
1641. IEEE, 2016.

Karl Pearson. Liii. on lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, 2(11):559-572, 1901.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention, pages 234-241.
Springer, 2015.

Alireza Shafaei and James J Little. Real-time human motion capture with
multiple depth cameras. In Computer and Robot Vision (CRV), 2016 13th
Conference on, pages 24-31. IEEE, 2016.

Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio,
Richard Moore, Alex Kipman, and Andrew Blake. Real-time human pose recog-

nition in parts from single depth images. In Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on, pages 1297-1304. Ieee, 2011.

Lingyu Wei, Qixing Huang, Duygu Ceylan, Etienne Vouga, and Hao Li. Dense
human body correspondences using convolutional networks. In Computer Vi-
sion and Pattern Recognition (CVPR), 2016 IEEE Conference on, pages 1544~
1553. IEEE, 2016.

Zhigiang Wen, Yi Yan, and Haiyan Cui. Study on segmentation of 3d human
body based on point cloud data. In Intelligent System Design and Engineering
Application (ISDEA), 2012 Second International Conference on, pages 657-660.
IEEE, 2012.

39

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ismar2011.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ismar2011.pdf
http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard
http://dx.doi.org/10.23915/distill.00003

Bibliography

[29] Yipin Yang, Yao Yu, Yu Zhou, Sidan Du, James Davis, and Ruigang Yang.
Semantic parametric reshaping of human body models. In 3D Vision (3DV),
2014 2nd International Conference on, volume 2, pages 41-48. IEEE, 2014.

[30] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated
convolutions. arXiv preprint arXiv:1511.07122, 2015.

40

	Acknowledgements
	Abstract
	Contents
	Outline
	Introduction
	Overall Implementation
	Contributions

	Related Works
	Methodology
	Depth Map Segmentation
	U-Net
	MobileNet and Depthwise Separable Convolution
	Transposed Convolution vs Upsampling with Convolution
	Proposed Architecture for Depth Segmentation
	Implementation Details
	Training Details

	Fused 3D Segmented Model
	KinectFusion
	Combining Segmented Maps
	Extraction of the Body Part

	Dataset
	Experiments and Results
	Depth Image Segmentation
	Label Fusion and Body Part Extraction

	Future Work
	Domain Adaptation
	A more sophisticated label fusion technique

	Conclusion
	Appendix
	Additional Information
	Source Code
	Docker Image

	Bibliography

