

We propose that Inverse Autoregressive Flow be incorporated in the
transition of the latent state z through time. This modelling could be used for
the posterior . Sampling a trajectory from an IAF
transformed posterior would only require only one sample from an auxiliary
random variable instead of one per time step.

Presented by - Jakob Breuninger, Neha Das, Sumit Dugar

IAF AS A DISTRIBUTION OVER TRAJECTORIES

ARCHITECTURE

REFERENCES

INVERSE AUTOREGRESSIVE FLOW

INSIGHTS

● Maximilian Karl, Maximilian Soelch, Justin Bayer, Patrick van der Smagt,
“Deep Variational Bayes Filters: Unsupervised Learning of State
Space Models from Raw Data”, Proceedings of the International
Conference on Learning Representations (ICLR), 2017

● M. Germain, K. Gregor, I. Murray, and H. Larochelle, “MADE: masked
autoencoder for distribution estimation”, CoRR, abs/1502.03509, 2015.

● D. P. Kingma, T. Salimans, and M. Welling, “Improving variational
inference with inverse autoregressive flow”, CoRR, abs/1606.04934,
2016.

● D. P. Kingma and M. Welling, “Auto-encoding variational bayes”,
CoRR, abs/1312.6114, 2013.

● D. Rezende and S. Mohamed “Variational inference with normalizing
flows”, In D. Blei and F. Bach, editors, Proceedings of the 32nd
International Conference on Machine Learning (ICML-15), pages 1530–
1538. JMLR Workshop and Conference Proceedings,

With Normalizing Flows we can transform a computationally cheap posterior
q0(z0jx) k-times to be arbitrarily flexible (see Figure below), through invertible
mappings zi = f (zi−1; x) [4]:

The log-likelihood of the transformed posterior can be calculated through
the change of variables theorem by summing up the determinant of the
Jacobian of each transformation:

Inverse Autoregressive Flow (IAF) is a flexible type of normalizing flow that
scales well to high dimensional latent spaces while remaining computational
efficiency [2]. At each IAF step the latent variable is transformed with:

Where are the output of an autoregressive neural network
with the input
Due to the autoregressive property and are lower
triangular & thus the Jacobian is a trivial sum:

CONCLUSION

Baseline DVBF IAF DVBF

BASELINE DVBF

Our baseline network is a recurrent neural network inspired by the deep
variational bayes filter.
In the interest of achieving the goal stated above, we require good long term
predictions. This can be achieved, by enforcing a State Space Model (SSM)
formulation in latent space. Thus we have:

 and

Now, by applying the Variational Auto Encoder paradigm and replacing the
bottleneck in the temporal autoencoder with stochastic units, we can train our
model by attempting to maximize the variational lower bound (disregarding
for simplicity):

The architecture of this model is shown in the adjoining section.

GOAL: MODELLING A DYNAMICAL SYSTEM MODEL

We seek a probabilistic, latent dynamical system model, which given a
sequence of controls and an initial latent state can generate a
sequence of latent states and corresponding observations .
Such a model should maximize the probability of observing given
under the assumption of an underlying latent dynamical system. This
probability can be formalized with:

PROPOSAL

● Difference in assumptions from baseline – In order to incorporate IAF
model as we do, we had to assume that the distribution q is factorized in a
manner different from the baseline.
● In Baseline:

● In our model:

However, this doesn’t conflict with our enforcement of a state space
model in the latent space.

● Annealing – In order to stabilize our training and ensure that the loss
continues to decrease to negative values, we annealed the KL Loss over
600 epochs.

SETBACKS AND LIMITATIONS

● Close but not improved results – As you can see, while the generated
trajectory is very close to the baseline, they are still slightly worse and do
not improve upon them.

● Negative KL Loss – Towards the middle of the training, the KL loss keeps
on decreasing and turns negative, which is something that shouldn’t
happen. This may indicate that there’s a flaw in our method.

Our method produces comparable (but slightly worse) results and needs
only one sampling step per trajectory as opposed to one sampling step per
time step, thus reducing the computational cost marginally. However, further
investigation is needed for examining what goes wrong with the KL Loss.

* disregarding for simplicity

* *

* disregarding for simplicity

EXPERIMENTAL RESULTS

DATA AND TRAINING

● We train and test our network on data generated from one of the classic
conrol environments of OpenAIGym - “Pendulum-v0”.
● Training Set: 500 instances of 50 step trajectories
● Validation Set: 128 instances of 50 step trajectories
● Test Set: 128 instances of 50 step trajectories

● Both the networks were trained for 1000 epochs with batch size 16. The
initial learning rate for baseline was kept at 0.0005 and for IAF DBVF as
0.001

Mean absolute difference of the generated trajectory
from ground truth : 0.1536

Mean absolute difference of the generated trajectory
from ground truth : 0.1915

Generated Trajectory of Observations - Baseline Trajectory of Observations – Ground Truth Generated Trajectory of Observations – IAF DVBF

Generated Trajectory : Arctan - Baseline Trajectory : Arctan – Ground Truth Generated Trajectory : Arctan – IAF DVBF

Total Loss - Baseline Total Loss – IAF DBVF

	Slide 1

