
  

We propose that Inverse Autoregressive Flow be incorporated in the 
transition of the latent state z through time. This modelling could be used for  
the posterior                               . Sampling a trajectory from an IAF 
transformed posterior would only require only one sample from an auxiliary
random variable instead of one per time step.       
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With Normalizing Flows we can transform a computationally cheap posterior
q0(z0jx) k-times to be arbitrarily flexible (see Figure below), through invertible 
mappings zi = f (zi−1; x) [4]:

The log-likelihood of the transformed posterior can be calculated through 
the change of variables theorem by summing up the determinant of the 
Jacobian of each transformation:

Inverse Autoregressive Flow (IAF) is a flexible type of normalizing flow that 
scales well to high dimensional latent spaces while remaining computational 
efficiency [2]. At each IAF step the latent variable is transformed with:

Where                      are the output of an autoregressive neural network 
with the input                
Due to the autoregressive property                  and                  are lower 
triangular & thus the Jacobian is a trivial sum:

CONCLUSION

Baseline DVBF IAF DVBF

BASELINE DVBF

Our baseline network is a recurrent neural network inspired by the deep 
variational bayes filter. 
In the interest of achieving the goal stated above, we require good long term 
predictions. This can be achieved, by enforcing a State Space Model (SSM) 
formulation in latent space. Thus we have:

                                                and

Now, by applying the Variational Auto Encoder paradigm and replacing the 
bottleneck in the temporal autoencoder with stochastic units, we can train our 
model by attempting to maximize the variational lower bound (disregarding  
for simplicity):

The architecture of this model is shown in the adjoining section.

       

GOAL: MODELLING A DYNAMICAL SYSTEM MODEL

We seek a probabilistic, latent dynamical system model, which given a 
sequence of controls         and an initial latent state     can generate a 
sequence of latent states         and corresponding observations        .
Such a model should maximize the probability of observing         given     
under the assumption of an underlying latent dynamical system. This 
probability can be formalized with:

PROPOSAL

● Difference in assumptions from baseline – In order to incorporate IAF 
model as we do, we had to assume that the distribution q is factorized in a 
manner different from the baseline. 
● In Baseline:

 

● In our model:

However, this doesn’t conflict with our enforcement of a state space 
model in the latent space.  

● Annealing – In order to stabilize our training and ensure that the loss 
continues to decrease to negative values, we annealed the KL Loss over 
600 epochs.

SETBACKS AND LIMITATIONS

● Close but not improved results – As you can see, while the generated 
trajectory is very close to the baseline, they are still slightly worse and do 
not improve upon them. 

● Negative KL Loss – Towards the middle of the training, the KL loss keeps 
on decreasing and turns negative, which is something that shouldn’t 
happen. This may indicate that there’s a flaw in our method.

Our method produces comparable (but slightly worse) results and needs 
only one sampling step per trajectory as opposed to one sampling step per 
time step, thus reducing the computational cost marginally. However, further 
investigation is needed for examining what goes wrong with the KL Loss.

* disregarding         for simplicity

* *

* disregarding         for simplicity

EXPERIMENTAL RESULTS

DATA AND TRAINING

● We train and test our network on data generated from one of the classic 
conrol environments of OpenAIGym - “Pendulum-v0”.
● Training Set: 500 instances of 50 step trajectories
● Validation Set: 128 instances of 50 step trajectories
● Test Set: 128 instances of 50 step trajectories

● Both the networks were trained for 1000 epochs with batch size 16. The 
initial learning rate for baseline was kept at 0.0005 and for IAF DBVF as 
0.001

Mean absolute difference of the generated trajectory 
from ground truth : 0.1536

Mean absolute difference of the generated trajectory 
from ground truth : 0.1915

Generated Trajectory of Observations - Baseline Trajectory of Observations – Ground Truth Generated Trajectory of Observations – IAF DVBF

Generated Trajectory : Arctan - Baseline Trajectory : Arctan – Ground Truth Generated Trajectory : Arctan – IAF DVBF

Total Loss - Baseline Total Loss – IAF DBVF
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